gilik. 1

Module 5 Review

Name: Key Date: _____ Hour:

5.1 - Cubic Eunctions

For 1-2, describe, **in words**, the transformations applied to the graph of $f(x) = x^3$ to produce the graph of g(x). Then graph g(x) with at least 3 specific points.

1)
$$g(x) = -(x-3)^3 + 2$$

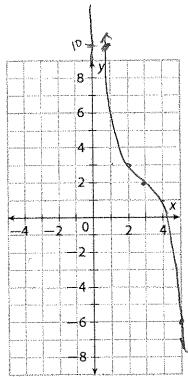
2)
$$g(x) = -3(x+2)^3 - 2$$

Transformation(s):

reflect over x-axis

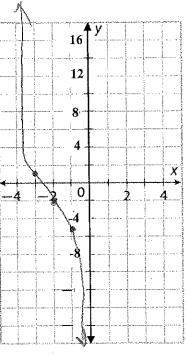
Right 3 UP 2

	Χ	g(x)
	1	16
	2	3
<		alice S
		,
	5	(



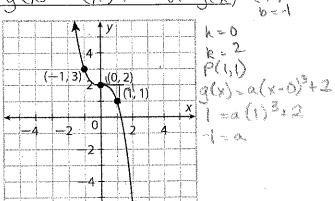
Transformation(s):	. 3
vert stretch 3	
down t	A

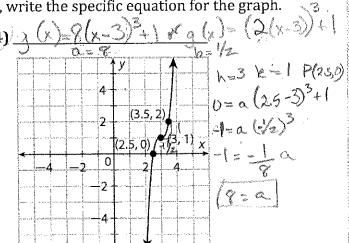
	Х	g(x)	
	7	22	
	-3	ecupiati	
	-2	200	\supset
		- 5	
	0	-26	



For 3-4, given the general equation $f(x) = a(x-h)^3 + k$, write the specific equation for the graph.

3) $g(x) = -(x)^{\frac{3}{4}} 2$ or $g(x) = (-x)^{\frac{3}{4}} + 2$



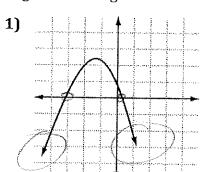


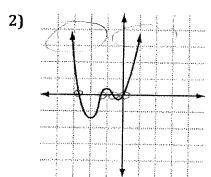
For 5-6, write the specific equation of the form $g(x) = a\left(\frac{1}{b}(x-h)\right)^3 + k$ after the given transformations of the graph of $f(x) = x^3$.

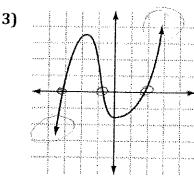
- 5) A reflection across the x-axis, followed by a translation 11units up and 7 units to the left. $g(x) = -(x+7)^3+1$
- **6)** A vertical stretch by a factor of 6, followed by a translation 9 units to the right and 3 units down. $g(x) = ((x-9)^3 3)$

5.2 - Polynomial Functions

For 1-3, identify whether each function graphed has an odd or even degree and a positive or negative leading coefficient.







Degree: even Qleast 2nd

Degree: even Oleastyth

Degree: odd Dleast 3rd

Leading Coeff: ____

—Leading Coeff: ____

Leading Coeff: ___+

For 4-5, graph each function on a graphing calculator to determine the number of turning points, the number of global maximum and/or minimum values, and the number of local maximum and/or minimum values that are not global.

4)
$$f(x) = x(x-4)^2$$

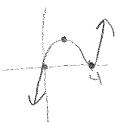
Turning Points: 2

Global Maximum(s):

Local Maximum(s):

Global Minimum(s): ______

Local Minimum(s):



5)
$$f(x) = -x^2(x-2)(x+1)$$

Turning Points: 3

Global Maximum(s):

Local Maximum(s):

Global Minimum(s):

Local Minimum(s):

For 6-9, graph each function without a calculator. State the degree, end behavior, x- and y- intercepts, and the intervals where the function is positive or negative in interval notation.

6)
$$f(x) = -(x-1)^2(x+3)$$

Degree: 3

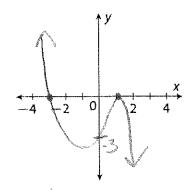
End Behavior: $A > \times \rightarrow \times, f(x) > -\infty$

y = 0 x - intercept(s): y = -3,

$$x = 0$$
 y-intercept: $y = -3$

Positive: $(-\infty, -3)$

Negative: (-3, 1) $\sqrt{1, 60}$



8)
$$f(x) = x(x-4)(x+1)$$

Degree: 3

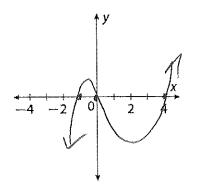
End Behavior: $A_5 \times \infty$, $A_6 \times \infty$

x - intercept(s): x = 1,0,4

y – intercept : _____

- Positive: (-1, 0)

Negative: $(-\omega, -1) \cup (0, 4)$



7)
$$f(x) = (x+2)(x-3)(x-1)$$

Degree: ____

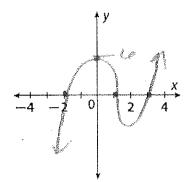
End Behavior: $A_5 \times A = A_5 \times A_5$

x - intercept(s): x = -2, 3, 1

y - intercept : ______

Positive: $(-2, 1) \cup (3, 4)$

Negative: $(-\infty, -2)(1, 3)$



$$(-9) f(x) = -x^2(x+3)$$

Degree: 🗷 🗖

End Behavior: $A = x \rightarrow A$, $C(x) \rightarrow CA$

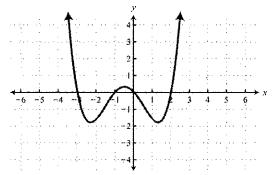
x - intercept(s): y = 0, -3

Positive: $(-\cos_1-3)$

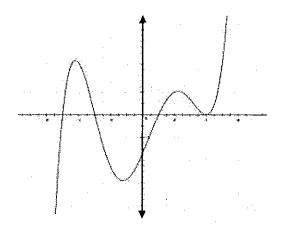
Negative: (O, (S)

For 10-13, write the equation of each graph in intercept form, with integer x-intercepts. Assume the leading coefficient, *a*, is either 1 or -1.

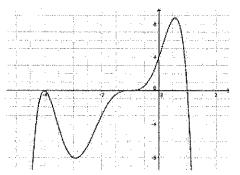
10)
$$f(x) = +(x+3)(x+1)(x)(x-2)$$



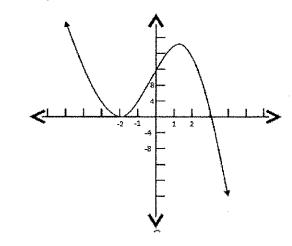
12)
$$f(x) = +(x+5)(x+3)(x-1)(x-4)^2$$



11)
$$f(x) = -(x+4)^{2}(x+1)^{3}(x-1)$$



13)
$$f(x) = -(x+2)^{2}(x-3)$$



For 12-13, write a function, V(x), for the volume of the box that could be made by cutting an x in. by x in. square from each corner of the given rectangular piece of cardboard. Then, graph your function to answers the questions that follow. *Approximate decimal answers to the nearest* 10^{th} .

12) 8 in. x 15 in.

$$V(x) = \frac{(x)(8-2x)(15-2x)}{(x)(15-2x)}$$
A What is the maximum possible

A. What is the maximum possible volume? $\sqrt{-90.7i}$

B. What value of x maximizes the volume? $\chi = 1.7$

C. What are the dimensions of the box with the maximum volume?

D. What are the domain and range of the function?

13) 19in. x 15 in

$$V(x) = (x)(15-2x)(19-2x)$$

A. What is the maximum possible volume? V = 352.7 ($\sqrt{3}$

C. What are the dimensions of the box with the maximum volume?

D. What are the domain and range of the function?

4