. Algebra 2 Module 5 Review
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5.1 - Cubic Eaﬁ'(/:tions

For 1-2, describe, in words, the transformations applied to the graph of f (x) = x? to produce the
graph of g(x). Then graph g(x) with at least 3 specific points.

DNgx)=—(x—3)3+2 2)g(x) = —3(x+2)* -2
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For 3-4, given the general equation f{(x) = a(x — k) + k, write the specific equation for the graph.
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For 5-6, write the specific equation of the form g(x) = a (% (x — h)) + k after the given

transformations of the graph of f(x) = x3.
5) Areflection across the x-axis, followed by a translation 11units up and 7 units to the left.
q ()= - (% +7j 74 1)
6) A vertical stretch by a factor of 6, followed by a translation 9 units to the right and 3 units down.
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5.2 ~ Polynomial Functions

For 1-3, identify whether each function graphed has an odd or even degree and a positive or
negative leading coefficient.
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For 4-5, graph each function on a graphing calculator to determine the number of turning points,
the number of global maximum and/or minimum values, and the number of local maximum and/or
minimum values that are not global.

4) f(x) = x(x — 4)? 5) F(¥) = —x*(x — 2)(x + 1)

Turning Points: L A Turning Points: =
Global Maximum(s): E

Local Maximum(s): i

Global Minimum(s): () | Global Minimum(s): __ O
Local Minimum(s): { Local Minimum(s): 3

Global Maximum(s): O

Local Maximum(s): ]




For 6-9, graph each function without a calculator. State the degree, end behavior, x- and y- intercepts, and

6) f(x) = —(x — l)z(x + 3) gt
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the intervals where the fungtion is positive or negative in interval notation.
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For 10-13, write the equation of each graph in intercept form, with integer x-intercepts. Assume
the leading coefficient, g, is either 1 or -1.
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For 12-13, write a function, V{x), for the volume of the box that could be made by cutting an x in. by
x in. square from each corner of the given rectangular piece of cardboard. Then, graph your
function to answers the questions that follow. Approximate decimal answers to the nearest 10,

12} 8in.x15in.
veg=_ L) (g-20 (5 <2,

e

A. What is the maximum possible

volume? \J =S {7 .5

B. What value of x maximizes the
volume? y -y 7 /.~

Foany

C. What are the dimensions of the box
with the maximum volume?
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D. What are the domain and range of
the function?
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A. What is the maximum pOSSIbie
volume7 \V=55820.7 “/\

B. What value of x maximizes the
volume? =) @ ;.4

C. What are the dimensions of the box
with the maximum volume?
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the function?
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